
Linear regression 

Linear regression is one of the easiest and most popular Machine Learning 

algorithms. It is a statistical method that is used for predictive analysis. Linear 

regression makes predictions for continuous/real or numeric variables such 

as sales, salary, age, product price, etc. 

Linear regression algorithm shows a linear relationship between a dependent (y) 

and one or more independent (y) variables, hence called as linear regression. 

Since linear regression shows the linear relationship, which means it finds how 

the value of the dependent variable is changing according to the value of the 

independent variable. 

The linear regression model provides a sloped straight line representing the 

relationship between the variables. Consider the below image: 

 

Mathematically, we can represent a linear regression as: 

y= a0+a1x+ ε 

Here, 

Y= Dependent Variable (Target Variable) 

X= Independent Variable (predictor Variable) 



a0= intercept of the line (Gives an additional degree of freedom) 

a1 = Linear regression coefficient (scale factor to each input value). 

ε = random error 

The values for x and y variables are training datasets for Linear Regression model 

representation. 

Types of Linear Regression 

Linear regression can be further divided into two types of the algorithm: 

o Simple Linear Regression: 

If a single independent variable is used to predict the value of a numerical 

dependent variable, then such a Linear Regression algorithm is called 

Simple Linear Regression. 

o Multiple Linear regression: 

If more than one independent variable is used to predict the value of a 

numerical dependent variable, then such a Linear Regression algorithm is 

called Multiple Linear Regression. 

Linear Regression Line 

A linear line showing the relationship between the dependent and independent 

variables is called a regression line. A regression line can show two types of 

relationship: 

o Positive Linear Relationship: 

If the dependent variable increases on the Y-axis and independent variable 

increases on X-axis, then such a relationship is termed as a Positive linear 

relationship. 

 



o Negative Linear Relationship: 

If the dependent variable decreases on the Y-axis and independent variable 

increases on the X-axis, then such a relationship is called a negative linear 

relationship. 

 

Finding the best fit line: 

When working with linear regression, our main goal is to find the best fit line that 

means the error between predicted values and actual values should be minimized. 

The best fit line will have the least error. 

The different values for weights or the coefficient of lines (a0, a1) gives a different 

line of regression, so we need to calculate the best values for a0 and a1 to find the 

best fit line, so to calculate this we use cost function. 

Cost function- 

o The different values for weights or coefficient of lines (a0, a1) gives the 

different line of regression, and the cost function is used to estimate the 

values of the coefficient for the best fit line. 

o Cost function optimizes the regression coefficients or weights. It measures 

how a linear regression model is performing. 

o We can use the cost function to find the accuracy of the mapping function, 

which maps the input variable to the output variable. This mapping 

function is also known as Hypothesis function. 



For Linear Regression, we use the Mean Squared Error (MSE) cost function, 

which is the average of squared error occurred between the predicted values and 

actual values. It can be written as: 

For the above linear equation, MSE can be calculated as: 

 

Where, 

N=Total number of observation 

Yi = Actual value 

(a1xi+a0)= Predicted value. 

Residuals: The distance between the actual value and predicted values is called 

residual. If the observed points are far from the regression line, then the residual 

will be high, and so cost function will high. If the scatter points are close to the 

regression line, then the residual will be small and hence the cost function. 

Gradient Descent: 

o Gradient descent is used to minimize the MSE by calculating the gradient 

of the cost function. 

o A regression model uses gradient descent to update the coefficients of the 

line by reducing the cost function. 

o It is done by a random selection of values of coefficient and then iteratively 

update the values to reach the minimum cost function. 

Model Performance: 

The Goodness of fit determines how the line of regression fits the set of 

observations. The process of finding the best model out of various models is 

called optimization. It can be achieved by below method: 

1. R-squared method: 

o R-squared is a statistical method that determines the goodness of fit. 

o It measures the strength of the relationship between the dependent and 

independent variables on a scale of 0-100%. 



o The high value of R-square determines the less difference between the 

predicted values and actual values and hence represents a good model. 

o It is also called a coefficient of determination, or coefficient of multiple 

determination for multiple regression. 

o It can be calculated from the below formula: 

 

Assumptions of Linear Regression 

Below are some important assumptions of Linear Regression. These are some 

formal checks while building a Linear Regression model, which ensures to get 

the best possible result from the given dataset. 

o Linear relationship between the features and target: 

Linear regression assumes the linear relationship between the dependent 

and independent variables. 

o Small or no multicollinearity between the features: 

Multicollinearity means high-correlation between the independent 

variables. Due to multicollinearity, it may difficult to find the true 

relationship between the predictors and target variables. Or we can say, it 

is difficult to determine which predictor variable is affecting the target 

variable and which is not. So, the model assumes either little or no 

multicollinearity between the features or independent variables. 

o Homoscedasticity Assumption: 

Homoscedasticity is a situation when the error term is the same for all the 

values of independent variables. With homoscedasticity, there should be 

no clear pattern distribution of data in the scatter plot. 

o Normal distribution of error terms: 

Linear regression assumes that the error term should follow the normal 

distribution pattern. If error terms are not normally distributed, then 

confidence intervals will become either too wide or too narrow, which may 

cause difficulties in finding coefficients. 

It can be checked using the q-q plot. If the plot shows a straight line 

without any deviation, which means the error is normally distributed. 



o No autocorrelations: 

The linear regression model assumes no autocorrelation in error terms. If 

there will be any correlation in the error term, then it will drastically reduce 

the accuracy of the model. Autocorrelation usually occurs if there is a 

dependency between residual errors. 

 


